ASBESTOS:
the next national plan

Proactivity, prevention, planning

Workshop 5
Research Directions

#2018ASEACONF
ASBESTOS: the next national plan

Proactivity, prevention, planning

Welcome

#2018ASEACONF
From Bench to Public: Another Direction of Translational Research

Ken Takahashi, Yuen Cheng, Matthew Soeberg
Asbestos Diseases Research Institute
Introduction

Ken Takahashi, MD, MPH, PHD
Director, Asbestos Diseases Research Institute
Translational Research

- From Bench to Bedside

Australian Situation on Asbestos/ARD

- Lingering ARD Epidemic
- Exposure to Asbestos *in situ*

Translational Research

- From Bench to Bedside
- “From Bench to Public”
Asbestos Diseases Research Institute

“understanding the nature and causes of”; “science”

“diagnosing and treating”; “treatments”; “medicine”; “health care delivery”

“preventing”; “preventative”
“education and training”; “educational”

Clinical
Laboratory
Public Health / Prevention
The Lab Research Perspective of Asbestos Related Diseases

Dr Yuen Yee Cheng
Laboratory Research Projects

1) *Diagnosis*
 - Develop biomarkers (less-invasive)
 - Discover epigenome to facilitate *Diagnosis*

2) *Disease Mechanism*
 - Identify microRNAs with therapeutic potential
 - Artificial microRNAs to inhibit growth of MPM
 - Role of YB-1 in drug resistance
 - Mechanisms leading to microRNA dysregulation in MPM

3) *Treatment*
 - 3D cell model of MPM
 - microRNA and drug resistance
 - microRNA regulate PD-L1 expression
Laboratory Research Projects

1) Diagnosis
 • Develop biomarkers (less-invasive)
 • Discover epigenome to facilitate Diagnosis

2) Disease Mechanism
 • Identify microRNAs with therapeutic potential
 • Artificial microRNAs to inhibit growth of MPM
 • Role of YB-1 in drug resistance
 • Mechanisms leading to microRNA dysregulation in MPM

3) Treatment
 • 3D cell model of MPM
 • microRNA and drug resistance
 • microRNA regulate PD-L1 expression
Molecular analysis

Diagnosis of Cancer

- Cancer Dx
- Cancer
-healthy

Multi class Cancer Dx

Identify tumour type

methylated

Companion Diagnosis

normal

Early cancer biomarker Dx
Discover epigenome to facilitate *Diagnosis*
Laboratory Research Projects

1) **Diagnosis**
 - Develop biomarkers (less-invasive)
 - Discover epigenome to facilitate *Diagnosis*

2) **Disease Mechanism**
 - Identify **microRNAs** with therapeutic potential
 - Artificial **microRNAs** to inhibit growth of MPM
 - Role of YB-1 in drug resistance
 - Mechanisms leading to microRNA dysregulation in MPM

3) **Treatment**
 - 3D cell model of MPM
 - microRNA and drug resistance
 - microRNA regulate PD-L1 expression
Identify microRNAs with Therapeutic potential

A

B

TALI apoptosis assay combined

Control miR-16 miR-193a-3p miR-16 & miR-193a-3p

DAY 9

DAY 16
Artificial microRNA

PLK1 protein densitometry

NDC80 protein densitometry

CDK1 protein densitometry

BCL2 protein densitometry

Migration Distance (mM)

MeT-5a

Normalized RLFL

Control amiR-1 amiR-2

PLK1 NDC80 CDK1 BCL2

MSTO

H2452

Cell Viability

(% normalized to control (C1))

Time (hours)

MSTO

H2452

Migration Distance (µM)

c81 amiR1 amiR2

** *** ***

Control amiR-1 amiR-2

*** *** ***
YB-1: a novel therapeutic target in mesothelioma?

Thomas Johnson (PhD candidate)

(a) YB-1 is overexpressed in mesothelioma and (b) knockdown doesn’t affect non-malignant cell growth

(b) YB-1 knockdown inhibits human mesothelioma growth in mice

(a) YB-1 knockdown inhibits mesothelioma growth and (b) migration *in vitro*

1a

<table>
<thead>
<tr>
<th>Non-malignant</th>
<th>Malignant pleural mesothelioma</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCF13, PCF15</td>
<td>VMC23, MSTO, SPC212</td>
</tr>
<tr>
<td>YB-1</td>
<td></td>
</tr>
<tr>
<td>B-actin</td>
<td></td>
</tr>
</tbody>
</table>

1b

<table>
<thead>
<tr>
<th>Non-malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0%</td>
</tr>
<tr>
<td>50%</td>
</tr>
<tr>
<td>100%</td>
</tr>
</tbody>
</table>

2a

2b

YB-1 knockdown inhibits human mesothelioma growth in mice

10 nM
5 nM

% Co (120 hrs)

Time (hours)

% Co (120 hrs)

Tumor weight (g)

Growth in mice

si-YB-1
Video migration analysis of mesothelioma cells

Control treated

YB-1 inhibited
Multiple mechanisms contribute to the downregulation of tumour suppressor microRNAs in MPM

Genomic deletion leads to the loss of miR-193a-3p as shown by copy number loss in the majority of cell lines.

Epigenetic mechanisms are not large contributors to microRNA loss in MPM cell lines.

C-Myc directly associates with the miR-15a/16-1 and miR-15b/16-2 promoter regions.

C-Myc knockdown leads to the transcriptional up-regulation of miR-15/16 most predominately via the miR-15b/16-2 locus.
Laboratory Research Projects

1) Diagnosis
 • Develop biomarkers (less-invasive)
 • Discover epigenome to facilitate Diagnosis

2) Disease Mechanism
 • Identify microRNAs with therapeutic potential
 • Artificial microRNAs to inhibit growth of MPM
 • Role of YB-1 in drug resistance
 • Mechanisms leading to microRNA dysregulation in MPM

3) Treatment
 • 3D cell model of MPM
 • microRNA and drug resistance
 • microRNA regulate PD-L1 expression
Current cell model in 2D

- Monolayer, poor cell-cell signaling
- Lack of extracellular matrix
- Lack of hypoxia
 → not similar to true biology

Scaffold (SEM)

- Multilayer, some cell-cell signalling
- Unnatural extracellular matrix
- Lack of hypoxia
 → Not similar to “true” biology

3D cells grown in scaffold

- Multilayer, realistic cell-cell signalling
- Naturally occurring extracellular matrix
- Realistic hypoxic core
 → Similar to “true” biology

Our Proof-of-concept experiments demonstrated
- Healthy cell morphology (see SEM image)
- Realistic tight junctions (see arrows in TEM Image)
Tumour suppressor microRNAs sensitise MPM drug resistant cell lines to chemotherapy

microRNA restoration increases chemotherapy sensitivity in MPM cells via regulation of apoptosis
Tumour suppressor microRNAs attenuate the level of immune checkpoint molecule PD-L1 and sensitise to chemotherapy in MPM - potential combination therapy in MPM.

- microRNA levels are lower in PD-L1 positive MPM tumours
- miR-15/16 restoration reduces PD-L1 levels

Antibodies can block the anti-immune response of the PD-1/PD-L1 axis in tumours.
Future directions

- Improve MPM diagnosis by further validating candidate biomarkers by utilising biospecimen’s in the ADRI biobank
- Improve MPM treatment by testing microRNA based *in vitro* findings in preclinical models
- Improve the outcomes of current treatment options in MPM using a combinatorial approach with immunotherapy
Towards a better understanding of asbestos-related disease

Dr Matthew Soeberg
A broader view of asbestos-related disease

- Asbestosis
- Asbestos-related lung cancer
- Laryngeal cancer
- Ovarian cancer
- Malignant mesothelioma – data most often presented
- Pleural plaques
What do the global burden of disease data tell us about asbestos-related disease from occupational exposure in Australia in 2016?

Pies chart showing:
- 3,017 cases of Asbestos-related Lung Cancer
- 766 cases of Malignant Mesothelioma
- 48 cases of Asbestos-related Laryngeal Cancer
- 77 cases of Asbestos-related Ovarian Cancer
- 140 cases of Asbestosis
What do the global burden of disease data tell us about asbestos-related disease from occupational exposure in Australia over time?
What can other data from Australia tell us? Asbestosis as a cause of death

Asbestosis as the primary cause of death – by age group

Asbestos as a secondary cause of death – by age group
What can other data from Australia tell us?

Malignant mesothelioma – primary cause of death

Asbestosis and malignant mesothelioma – primary cause of death

Asbestosis and malignant mesothelioma – primary cause of death + asbestosis - secondary cause of death
Mapping incidence of malignant mesothelioma in NSW (Linton et al. 2017)

Figure 1 Distribution of malignant pleural mesothelioma (MPM) diagnoses across New South Wales (NSW) between 2002 and 2009 according to NSW Cancer Registry and NSW Dust Diseases Board.
Occupational and non-occupational asbestos exposure for mesothelioma in Australia – Australian Mesothelioma Registry data (September 2017)
What is happening in Australia and internationally on public health research? (R-T Lin et al., 2018)

Figure 1 Trend in the number and proportion of scientific articles from 1991 to 2016. ARD-related articles=articles with a theme of asbestos and ARDs. Articles were defined as articles or reviews belonging to any of the three research areas (see online supplementary file, table S1) in InCites (Clarivate Analytics).17 ARD, asbestos-related diseases.
What is happening in Australia and internationally on public health research? (R-T Lin et al., 2018)

Figure 2 Trend in the number and proportion of articles by research area. ARD-related publications = articles with a theme of asbestos and ARDs. Articles were defined as articles or reviews belonging to any of three research areas (see online supplementary file, table S1) in InCites (Clarivate Analytics). ARD, asbestos-related diseases.
Potential future research directions

• Limiting the further decline of asbestos-related public health research in Australia and internationally

• Linking laboratory data with public health data to better understand causal associations between asbestos fibre types and the total burden of asbestos-related disease

• Linking hospitalisation data with public health data to better understand treatment and outcomes for people diagnosed with asbestos-related disease

• “Deeper dive” of primary and second death and hospitalisation data for asbestosis

• Taking a public health approach to understanding silicosis exposure and links to cancer
From Bench to Public: Another Direction of Translational Research

Ken Takahashi, Yuen Cheng, Matthew Soeberg
Asbestos Diseases Research Institute
ASBESTOS: the next national plan

Proactivity, prevention, planning

Workshop 5
Research Directions

#2018ASEACONF
Research Directions

NHMRC Environmental and Public Health Guidelines: Translating research into advice and guidelines

Dr Elaine Stone, Assistant Director
Public Health Section
National Health and Medical Research Council
Core NHMRC public and environmental health areas

- Drinking Water quality (includes information on asbestos in water)
- Recreational Water quality
- Lead advice (blood lead levels)
- Water fluoridation
- Nutrition
- Risks of alcohol consumption
- Infection prevention and control
Who asks us to do the work?

Chief Medical Officer; State and territory Chief Health Officers’; Department of Health
- Lead Statement,
- Water Quality guidelines
- Dietary and Alcohol Guidelines

Health Minister directive
- Air quality in traffic tunnels

Council of NHMRC
- Fluoridation Public Statement
- Windfarms Statement

CEO Statement
- E-Cigarettes

Mainly funded through cost recovery: contributions from state and territory health departments and Australian Government Departments.
Recent environment health resources

Water Quality

Drinking water
- Australian Drinking Water Guidelines (rolling review since 2011)

Recreational Water

Lead Exposure

Public Statement and Information Paper: Evidence on the effects of lead on human health (2016)

Wind Farms

Public Statement and Information Paper (2015)
Recent public health resources

• Australian Dietary Guidelines (2013)

• Alcohol guidelines (2009)

• Fluoridation (2017)
 • Public Statement: Water fluoridation and human health in Australia (2017)

• Infection prevention
 • Infection Control Guidelines (2010)
 • Staying Healthy in Childcare guidance (2012)
Development/Updating Environmental Health Advice and Guidelines:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Establish an expert advisory committee</td>
</tr>
</tbody>
</table>
| B | • Prioritise areas for review and develop the scientific questions
• Consideration of other national and international guidelines
• Conduct reviews of the evidence & gather other ‘additional’ evidence |
| C | • Quality processes: methodological review, expert review |
| D | • Develop/update advice / guideline |
| E | • Undertake public consultation |
| F | • Finalise Advice/Guideline and receive sign off by Council and CEO |
Environmental Health Example: Australian Drinking Water Guidelines

- ADWG provides national guidance for drinking water quality
 - Includes recommendations that support consistency and harmonisation across state and territories
 - Are guidelines, NOT mandatory standards
- Standards are then developed by state and territory health regulators based on the information provided by the ADWG
- Health Based (Related) Guideline Values for each chemical represent NHMRC recommendation for ensuring safe drinking water
- Includes a chemical fact sheet on asbestos
ADWG Asbestos fact sheet (1996) – At the time was insufficient data to develop a health based guideline value for asbestos in drinking water.

Concluded that unlikely that the numbers of asbestos fibres present in most drinking water supplies would be a health concern.

US EPA has guideline value of 7 million fibres per litre

WHO (2003) concluded that there is no need to establish a guideline for asbestos in drinking water. Based on

- A lack of association between ingestion of asbestos in drinking-water and increased cancer risk in epidemiological studies
- Feeding studies in animals have not consistently increased the incidence of tumours of the gastrointestinal tract.
NHMRC funded health related research into asbestos

• Since 2000 NHMRC has funded over $30 million on asbestos related research

• Most NHMRC research schemes are Investigator initiated research (with exception of targeted calls for research) and under go a competitive peer review process which means that the amount of research funded depend on the quality of the applications.

Funded research Include:
• Bernie Banton Fellowships (on mesothelioma and asbestosis)
• National Centre for Asbestos Research (Centre of Research Excellence)
• Project Grants (Investigator initiated)
NHMRC funded health related research into asbestos

<table>
<thead>
<tr>
<th>Grant Type</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Career Development Fellowships</td>
<td>$94,250</td>
<td>$96,040</td>
<td>$97,769</td>
<td>$71,841</td>
<td>$79,593</td>
<td>$87,781</td>
<td>$199,810</td>
<td>$226,931</td>
<td></td>
</tr>
<tr>
<td>Centres of Research Excellence</td>
<td>$400,000</td>
<td>$400,000</td>
<td>$1,547,966</td>
<td>$931,663</td>
<td>$869,595</td>
<td>$963,529</td>
<td>$1,255,939</td>
<td>$505,005</td>
<td>$512,504</td>
</tr>
<tr>
<td>Postgraduate Scholarships</td>
<td>$22,677</td>
<td>$54,875</td>
<td>$111,165</td>
<td>$97,778</td>
<td>$66,894</td>
<td>$53,837</td>
<td>$50,257</td>
<td>$6,012</td>
<td></td>
</tr>
<tr>
<td>Practitioner Fellowships</td>
<td>$127,450</td>
<td>$129,871</td>
<td>$132,208</td>
<td>$45,654</td>
<td>$113,844</td>
<td>$115,438</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Grants</td>
<td>$762,260</td>
<td>$1,185,250</td>
<td>$1,139,752</td>
<td>$839,087</td>
<td>$688,624</td>
<td>$1,000,680</td>
<td>$1,723,474</td>
<td>$1,281,908</td>
<td>$856,119</td>
</tr>
<tr>
<td>Targeted Calls for Research</td>
<td>$1,539,047</td>
<td>$948,660</td>
<td>$1,914,182</td>
<td>$1,696,954</td>
<td>$2,097,639</td>
<td>$3,117,450</td>
<td>$2,106,580</td>
<td>$1,710,991</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$2,945,684</td>
<td>$2,814,695</td>
<td>$3,028,860</td>
<td>$1,914,182</td>
<td>$1,696,954</td>
<td>$2,097,639</td>
<td>$3,117,450</td>
<td>$2,106,580</td>
<td>$1,710,991</td>
</tr>
</tbody>
</table>

- For more information on NHMRC funding opportunities https://nhmrc.gov.au/funding
Challenges in assessing environmental health evidence

• Historically depended significantly on expert opinion.
• Moving towards an evidence-based approach.
• Need to consider epidemiological and toxicological data (often animal studies), rarely Randomised Controlled Trials (RCTs).
• Consideration of peer reviewed and grey literature (e.g. technical reports, Water RA project reports, other guidelines)
• Systematic review processes, evaluating data quality and rating the level of evidence are relatively new concepts.
• When do we not need systematic review and when is narrative review/literature review adequate?
Australian Drinking Water Guidelines – Recent Examples of developing environmental health guidance

• Lanthanum Health Based Guideline Value (HBGV) and fact sheet
• Per- and Poly- fluoroalkyl substances (PFAS) fact sheet and HBGV
• Chemical fact sheet review
Example 1 - Development of a Guideline Value and fact sheet for Lanthanum

• Lanthanum is a metallic chemical element used as lanthanum-modified clay in water treatment to reduce algal blooms (e.g. cyanobacteria) on reservoirs.

• NHMRC collaborated with National Industrial Chemicals Notification and Assessment Scheme (NICNAS) to review published literature on lanthanum from (2012-2015) and considered the NICNAS Secondary Notification Assessment Report (2014) for studies prior to 2012.

• Databases searched: OVID Medline, OVID Embase, AGRIS, AGRICOLA, National Toxicology Program.
Example 1 - Development of a Guideline Value and fact sheet for Lanthanum

- Used Covidence (https://www.covidence.org/) an online tool for conducting systematic reviews.
 - 151 papers were identified and two reviewers screened the references by title and abstract to determine if they met inclusion criteria.
 - 25 were thought to meet the inclusion criteria and full text was examined, of these 2 were relevant. Risk of bias assessed using tool developed by NTP Office of Health Assessment and Translation
Example 1 - Development of a Guideline Value and fact sheet for Lanthanum

Inclusion Criteria
• Studies with lanthanum and a control.
• Studies measuring some kind of toxic or health related endpoint (including pharmacological studies on lanthanum in end-stage renal failure cases).
• Studies in humans or non-human mammals (that is, not aquatic invertebrates or fish, etc).
• Studies in whole animals or humans (not in vitro, cell cultures).
• Published between November 2012 and October 2015.

Exclusion Criteria
• Non-English language studies.
• Studies that do not contain original data, such as reviews, editorials or commentaries.
• Studies that have not been peer reviewed (e.g. conference abstracts, technical reports, theses/dissertations, working papers from research groups or committees, and white papers).
Calculation of a Guideline Value

- Chemical guidelines are calculated from the **Acceptable Daily Intake (ADI)** = “the amount of a chemical that can be ingested daily by a human over a lifetime without appreciable health risk”
 - Tolerable Daily Intake (TDI) in WHO and European documents
 - Reference Dose (RfD) in US documents
- When human data is not available, the ADI is extrapolated from the next best thing: the **No Observed Adverse Effect Level (NOAEL)** from animal toxicity data (rodents, dogs, primates)
- The NOAEL is the highest dose that produces NO adverse effects
- Uncertainty factors (UF); also called “Safety Factors” (SF) are applied to animal NOAEL to extrapolate ADI for humans.
Calculation of a Guideline Value

• Guideline value calculated as:

\[
GV (\text{mg/L}) = \frac{ADI (\text{mg/kg/d}) \times \text{body weight (kg)} \times P}{\text{daily water intake (L/d)}}
\]

• Where
 – Body weight = average body weight in Australia (70 kg) [60 kg in WHO]
 – P = proportion of intake from water (also sometimes referred to as RSC Relative Source Contribution); accounts for exposure from other sources, and usually set at P = 0.1
 – Daily water intake = 2 L/d (based on empirical data) [more in tropics]
Calculating guideline values for Lanthanum

- Short-term, long-term and sub-lethal (e.g., carcinogenicity, reproductive toxicity, neurotoxicity) studies in mice, rats, rabbits, dogs, goats
- Neurobehavioural changes in rat pups was most sensitive endpoint: NOAEL = 0.06 mg/kg bw/d as La$^{3+}$

\[
\text{ADI} = \frac{\text{NOAEL}}{\text{UF}} = \frac{0.06 \text{ mg/kg bw/d}}{10 \text{ (inter)} \times 10 \text{ (intra)}} = 0.0006 \text{ mg/kg/d}
\]

\[
\text{GV} = \frac{0.0006 \text{ mg/kg/d} \times 70 \text{ kg} \times 0.1}{2 \text{ L/d}} = 0.002 \text{ mg/L}
\]
Example 2 - Development of a Guideline Values and fact sheet for Per- and poly-fluoroalkyl substances (PFAS)

• NHMRC used a review from Food Standards Australia New Zealand (FSANZ) and information on methods from National Measurements Institute (NMI) to inform the Fact Sheet.

• FSANZ conducted a review of available literature to determine Tolerable Daily Intakes (TDI) for Per- and poly-fluoroalkyl substances including PFOS, PFOA and PFHxS.

• FSANZ concluded that available human epidemiology data are not suitable to support the derivation of TDI for PFOS or PFOA.

• TDIs based on extensive toxicological databases in laboratory animals
Example 2 - Development of a Guideline Value and fact sheet for Per- and poly-fluoroalkyl substances (PFAS)

- NHMRC worked with its Water Quality Advisory Committee to develop guidelines values for PFOS and PFOA using a TDI established by FSANZ which is based on decreased parental and offspring body weight gains in a multigenerational reproductive toxicity study in rats.

- Calculation based on
 - Body weight = average body weight in Australia (70 kg) [60 kg in WHO]
 - $P = \text{proportion of intake from water. Set at } P = 0.1$
 - Daily water intake = 2 L/day
Calculating guideline values for PFOS

- Example with PFOS based on an TDI of 0.02 µg/kg/d, established by FSANZ (2017):

\[
GV (\text{mg/L}) = \frac{\text{TDI (mg/kg/d)} \times \text{body weight (kg)} \times P}{\text{daily water intake (L/d)}}
\]

\[
GV (\text{mg/L}) = \frac{0.000 \ 02 \ \text{mg/kg/d} \times 70 \ \text{kg} \times 0.1}{2 \ \text{L/d}}
\]

\[
GV = 0.000 \ 07 \ \text{mg/L} = 0.07 \ \mu\text{g/L}
\]
Challenges in assessing environmental health evidence - example
Australian Drinking Water Guidelines

- Environmental health usually involves complex issues

e.g. Disinfection by-products in drinking water

- Large number of chemicals >600 DBP exist
- Benefits of disinfection weighed against potential association with adverse
effects (microbiological risk).
- Epidemiological evidence limited and poor quality
- Limited detailed toxicological assessments
- Look at surrogates? Generalise information of groups of DBP?
- Harm vs benefit?
Challenges in assessing environmental health evidence

• What databases capture the relevant literature in environmental health? How to use grey literature?

 e.g. microbial health based targets

• New way of working for experts. Being considered internationally e.g. WHO, National Toxicology Program (USA), Cochrane, evidence based toxicology handbook.

• ADWG - guidelines not legislation so up to states and territories to implement as they see fit.
Example 3- Chemical fact sheet review- updating guideline values

• Part V of the ADWG contain more than 200 fact sheets, most of which have guideline values

• These undergo rolling revisions to ensure they represent the latest scientific evidence

• It is impossible to update all guidelines all the time, so NHMRC Water Quality Advisory Committee (WQAC) has recently developed a screening approach to prioritise revisions.
Challenges in assessing environmental health evidence

- Commencing review of prioritised chemical guideline values including lead, nickel, antimony, cadmium, selenium, copper and some disinfection by-products (e.g., THMs).
- As part of review are developing a new methodological framework which can eventually be used for all chemical fact sheets in the ADWG (including asbestos).
- For updating chemical guidelines values are looking to leverage off existing regulatory work.
 - Eg TDI, ADI, NOAEL, LOEAL to develop health based guideline values (HBGV)
Thank you

Contact us at:
water@nhmrc.gov.au

More information on NHMRC:
www.nhmrc.gov.au

Dr Elaine Stone
Elaine.stone@nhmrc.gov.au