International Conference on
ASBESTOS AWARENESS
AND MANAGEMENT 2015
Towards an asbestos-free Australia
Where are the current and future exposure risks in Australia?

Geza Benke1 and Jeremy Trotman2

1Monash University, Victoria and The Australian Mesothelioma Registry
2JTA Health, Safety and Noise Specialists, Victoria
Australian Mesothelioma Registry

Collecting Information to assist with the Prevention of Mesothelioma
Who is involved?

- Safe Work Australia
- State and Territory Cancer Registries
- Australian Government
- Comcare
- NSW Government
- Cancer Institute NSW
- Hunter Research Foundation
- The University of Sydney
- ADRI (Asbestos Diseases Research Institute)
Australian Mesothelioma Registry

• Contains information about people diagnosed with mesothelioma from July 2010

• Includes historical residential and occupational data to help assess persons exposure to asbestos throughout their life

• Information helps with research and prevention and to help develop policies to best deal with asbestos still present in Australia’s buildings and environment

• AMR Annual Report – rates of new cases and deaths, patterns of exposure to asbestos in mesothelioma patients
Aims of the AMR

• Better understand the relationship between asbestos exposure and mesothelioma

• Identify the circumstances under which groups of individuals are exposed to potentially dangerous levels of asbestos and to facilitate prevention.

• Assist the development of policies to best deal with the asbestos still present in our environment.

• Provide information to assist researchers in undertaking investigations with the aim of preventing mesothelioma in the future.
Process: Asbestos Exposure Information Collection

- **Patient**
 - To complete the Postal Questionnaire

- **MonCOEH**
 - Assigns specific interview questions based on the completed Postal Questionnaire

- **Hunter Valley Research Foundation**
 - Conducts telephone interviews with patients
At 20 August 2015: 3,383 notifications of mesothelioma had been received for diagnoses since 1 July 2010

641 notifications of people newly diagnosed with mesothelioma between 1 Jan and 31 Dec 2014

85% cases 65 years and over at time of diagnosis, 518 males and 123 females

People in Australia newly diagnosed with mesothelioma by year and sex, 2011 to 2014

<table>
<thead>
<tr>
<th>Year of Diagnosis</th>
<th>Males</th>
<th>Females</th>
<th>Persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>587</td>
<td>105</td>
<td>692</td>
</tr>
<tr>
<td>2012</td>
<td>591</td>
<td>122</td>
<td>713</td>
</tr>
<tr>
<td>2013</td>
<td>547</td>
<td>129</td>
<td>676</td>
</tr>
<tr>
<td>2014</td>
<td>518</td>
<td>123</td>
<td>641</td>
</tr>
</tbody>
</table>
Developments to AMR

- Numerous improvements being made to increase participation which is currently less than 20% nationally:
 - New patient and clinician brochures
 - Revised process - more personal approach
 - Simplified Questionnaire
 - Updated patient and clinician forms/information sheets
 - Website update
Latest findings from the AMR

Table 4.3: Summary of occupational and non-occupational exposure assessment, by sex

<table>
<thead>
<tr>
<th></th>
<th>Exposure indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Occupational exposure only</td>
</tr>
<tr>
<td>Males</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
</tr>
<tr>
<td>Females</td>
<td>-</td>
</tr>
<tr>
<td>Persons</td>
<td>48</td>
</tr>
</tbody>
</table>
What is the source of the Non-occupational Mesothelioma cases?

- Misclassified occupational cases?
- Cases that lived with ‘former asbestos industry workers’?
- Cases that lived near former asbestos industries?
- Cases that lived in AC buildings?
- Cases that engaged in DIY home renovation or maintenance?
 (Park et al, 2013?)
Measurement of asbestos fibre release during removal works in a variety of DIY asbestos removal scenarios:

• Simulation Study by Monash University funded by ASEA
• Measurement of in-situ home DIY renovation infeasible due to:
 - Lack of H&S controls by DIY renovators
 - Reliance on a good response rate
 - Lack of control on timing and tasks of DIY renovators
Methodology

- Enclosure or “bubble” constructed to simulate laundry or small kitchen;
- Outdoor shed demolished
- Nine different tasks commonly undertaken in DIY home renovation and maintenance
- Asbestos fibre exposure monitored for static locations and personal samples, using high flow rate pumps at 6 to 7 litres per minute
- Analysis of filters by SEM and PCM
Tasks and fibre release scenarios simulated (1-5)

• Removal of asbestos cement (AC) flat external wall sheeting in dry conditions.
• Removal of asbestos AC corrugated (e.g. Super Six) external roof sheeting in dry conditions.
• Removal of a small outdoor shed constructed of flat and corrugated AC sheeting.
• Removal of asbestos cement support materials (to ceramic tiles) in sink splash-backs inside.
• Removal of AC wall panels and ceilings in bathrooms and kitchens.
Tasks and fibre release scenarios simulated (6-9)

- Removal of small sections of AC corrugated sheet to create penetrations e.g. for fans or flues.
- Removal of small sections of AC flat sheet to create penetrations (e.g. for an air conditioner).
- Drilling and screwing into asbestos cement sheet (e.g. to fix hooks, strapping, shelving, etc.).
- Stacking, wrapping and bagging of AC sheeting for disposal.
<table>
<thead>
<tr>
<th>Task#</th>
<th>Description</th>
<th>Static Result f/ml</th>
<th>Personal Result f/ml</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Removal of AC external roof sheeting</td>
<td>0.01</td>
<td>0.22</td>
<td>Stacking of sheets, no wetting</td>
</tr>
<tr>
<td>2</td>
<td>Removal of flat AC external wall sheeting</td>
<td>0.10</td>
<td>0.21</td>
<td>Used shovel and brush, no wetting</td>
</tr>
<tr>
<td>3</td>
<td>Removal of flues and small sections of AC</td>
<td>0.15</td>
<td>2.79</td>
<td>Used drill-mounted hole saw</td>
</tr>
<tr>
<td>4</td>
<td>Removal of AC support materials in sink splash back</td>
<td>0.03</td>
<td>1.06</td>
<td>Used hammer to break fixed sheets</td>
</tr>
<tr>
<td>5</td>
<td>Removal of small AC sections to accommodate air-con</td>
<td>0.01</td>
<td>13.23</td>
<td>Used angle grinder</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Task#</th>
<th>Description</th>
<th>Static Result f/ml</th>
<th>Personal Result f/ml</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Drilling and screwing AC sheet</td>
<td>0.06</td>
<td>0.06</td>
<td>Drilling 20 holes</td>
</tr>
<tr>
<td>7</td>
<td>Removal of AC wall panels and ceilings in bathrooms</td>
<td>0.02</td>
<td>0.66</td>
<td>Hammer used to break sheets, Removal of 20m²</td>
</tr>
<tr>
<td>8</td>
<td>Clean-up after task</td>
<td>0.03</td>
<td>0.90</td>
<td>Dry sweeping and bagging</td>
</tr>
<tr>
<td>9</td>
<td>Removal of a small outdoor shed constructed of flat and corrugated AC sheeting</td>
<td>0.03</td>
<td>0.12</td>
<td>Used hammer and pinch bar to remove screws and demolish shed</td>
</tr>
</tbody>
</table>
Discussion

• Results reflected worse case situation
• Seven tasks below regulatory occupational limit of 0.1 f/ml
• Dry cutting with power tools, breaking of AC sheeting by hammer and dry clean-up, lead to high levels
• All static monitoring less than personal samples
• Could not determine effects of weathering, as all AC sheets and flues used were highly weathered
Recommendations

• Prior to any work, it is important to consider the presence of asbestos and whether an asbestos register for the property may be warranted. If in doubt, take a precautionary approach and treat suspect material as you would confirmed ACM.

• If you are undertaking work involving ACM, prior to commencement ensure you have appropriate PPE, and disposal equipment, and access to a licensed disposal facility.

• Do not cut asbestos flues or sheet with power tools.

• Do not break AC sheeting as this can cause fibre release.

• Do not work on asbestos materials in confined, poorly ventilated environments.
Recommendations

• Use wet methods for removal and clean-up of asbestos cement debris.
• Use wet methods and/or approved HEPA filter vacuum cleaners for clean-up of asbestos cement dust.
• All DIY should be undertaken with the use of appropriate respiratory protection and personal protective equipment (PPE)
Acknowledgements

• We greatly acknowledge the assistance and funding of this research by the Asbestos Safety and Eradication Agency (ASEA)
• We acknowledge the Institute of Occupational Medicine (IOM) Edinburgh, UK and AEC Environmental Pty Ltd, Wayville, South Australia for the analysis of samples
• We acknowledge Wide Asbestos Removal Encapsulation Pty Ltd (AWARE) for providing the AC material